Suppression of MicroRNA-383 Enhances Therapeutic Potential of Human Bone-Marrow-Derived Mesenchymal Stem Cells in Treating Spinal Cord Injury via GDNF.

نویسندگان

  • Guo-Jun Wei
  • Gang An
  • Zuo-Wei Shi
  • Kai-Fu Wang
  • Ying Guan
  • Yan-Song Wang
  • Bo Han
  • En-Ming Yu
  • Peng-Fei Li
  • Da-Ming Dong
  • Li-Ping Wang
  • Zhao-Wei Teng
  • De-Lai Zhao
چکیده

BACKGROUND/AIMS Transplantation of bone-marrow-derived mesenchymal stem cells (MSCs) has been used to treat spinal cord injury (SCI) to enhance tissue repair and neural cell regeneration. Glial cell line derived neurotrophic factor (GDNF) is an identified neural growth and survival factor. Here, we examined whether modification of GDNF levels in MSCs may further increase the potential of MSCs in promoting neural cell regeneration and subsequently the therapeutic outcome. METHODS We examined the mRNA and protein levels of GDNF in human MSCs by RT-qPCR and Western blot, respectively. Bioinformatics analyses were done to predict microRNAs (miRNAs) that target GDNF in MSCs. The functional binding of miRNAs to GDNF mRNA was examined by a dual luciferase reporter assay. MSCs were transduced with adeno-associated virus (AAV) carrying null or antisense for miR-383 (as-miR-383), which were transplanted into nude rats that underwent SCI. The intact tissue, cavity volume, and recovery of locomotor activity were assessed. RESULTS MSCs expressed very low GDNF protein, but surprisingly high levels of GDNF mRNA. Bioinformatics analyses showed that miR-383 inhibited protein translation of GDNF, through binding to the 3'-UTR of the GDNF mRNA. MSCs transduced with AAV-as-miR-383 further increased the intact tissue percentage, decreased cavity volume, and enhanced the recovery of locomotor activity in nude rats that underwent SCI, compared to MSCs. CONCLUSIONS Suppression of miR-383 may increase the therapeutic potential of human bone-marrow-derived MSCs in treating SCI via augmentation of GDNF protein levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model

Back ground  Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these gr...

متن کامل

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

متن کامل

P144: Therapeutic Application of Mesenchymal Stem Cells in Spinal Cord Injury Treatment

Spinal cord injury (SCI) is a neurologic disorder that have a significant impact on quality of life, life expectancy, and economic burden. SCI leads to irreversible neuronal loss and ultimately leads to paralysis. Mesenchymal stem cells (MSCs) are a promising source for cellular therapy because they have possessed the capacity of self-renewal and differentiation to several distinct mesenchymal ...

متن کامل

Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2017